Number:	
Class:	Va

YEAR 12

ASSESSMENT TEST 3 TERM 2, 2014

MATHEMATICS EXTENSION 1

Time Allowed – 90 Minutes (Plus 5 minutes Reading Time)

- All questions may be attempted
- All questions are of equal value
- Department of Education approved calculators are permitted
- In every Question, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged work
- No grid paper is to be used unless provided with the examination paper
- This is an open book test, any printed or hand written materials are allowed must be placed on desk

The answers to all questions are to be returned in separate bundles clearly labeled Question 1, Question 2, etc. Each question must show your Candidate Number.

ATTEMPT ALL 7 QUESTIONS (70 marks)

QUESTION 1 (10 Marks) COMMENCE A NEW PAGE MARKS Five cards numbered 1, 2, 3, 4, 5 are arranged at random. (i) How many arrangements are there? 1 What is the probability that the arrangement finishes with a 24? (ii) 2 (iii) What is the probability that the last number in the arrangement is odd? 2 The equation of motion of a particle moving along the x-axis is $x = 2\sin(t + \frac{\pi}{\epsilon})$, (b) where x is in metres and t in seconds. Draw the displacement-time graph for $0 \le t \le \frac{11\pi}{6}$. (i) 2 When does the particle first change direction and where is it at this time? (ii) 2 Find the distance travelled by the particle in the first $\frac{4\pi}{3}$ seconds. (iii) 1 **QUESTION 2 (10 Marks) COMMENCE A NEW PAGE** A particle moves in a straight line so that its acceleration as a function of (a) displacement is given by $\frac{d^2x}{dt^2} = 1 - 4x$. Initially x = 1.25 cm and v = 0. 1 (i) Show that the motion is simple harmonic. Find the amplitude, period and centre of motion. 3 (ii) (iii) Find the velocity when t = 0.2 seconds. 2 1 (iv) Describe briefly what would have happened if the motion had commenced at x = 0.25 with v = 0. A container with capacity A litres is being filled with water. After t minutes the 3 (b) volume V litres of water in the container is given by $V = A(1 - e^{-kt})$ for some constant k > 0. If one quarter of the container is filled in the first two minutes, find what fraction of the container is filled in the next two minutes.

- (a) During a chemical reaction the amount, A grams, of a substance unconverted after t hours is given by the formula $A = 4 + e^{-3kt}$.
 - (i) Show that $\frac{dA}{dt} = -3k(A-4)$.
 - (ii) If initially A decreases at the rate of 0.04 grams per hour, find the value of k.
 - (iii) Using k found in part (ii), sketch the graph of $A = 4 + e^{-3kt}$ and indicate the values that A can take.
- (b) Eight people attend a meeting. They are provided with two circular tables, one seating 3 people, the other 5 people.
 - (i) How many seating arrangements are possible?
 - (ii) If the seating is done randomly, what is the probability that a particular couple are on different tables?

QUESTION 4 (10 Marks) COMMENCE A NEW PAGE

- (a) A container of water, heated to $100^{\circ}C$, is placed in a coolroom where the temperature is maintained at $-5^{\circ}C$. After t minutes, the rate of change of the temperature, $T^{\circ}C$, of the water is given by $\frac{dT}{dt} = -k(T+5)$, where k is a constant.
 - (i) Assuming the function $T = Ae^{-kt} 5$, where A is a constant, is a solution to the above differential equation, find the value of A.
 - (ii) After 20 minutes, the water temperature falls to 30°C. Find, to the nearest degree, the water temperature after a further 10 minutes.
 - (iii) Find, to the nearest minute, the time the water will need to be in the coolroom before its temperature reaches $0^{0}C$.
- (b) A small cube has one red face, two blue faces and three green faces. It is rolled three times.
 - (i) Find the number of distinct probability values of the possible outcomes. 1
 - (ii) Find the probability that only one colour appeared in three rolls of the cube. 2
 - (iii) Find the probability that exactly one blue face appeared in three rolls of the cube.

QUESTION 5 (10 Marks)

COMMENCE A NEW PAGE

MARKS

(a) Two bags each contain three marbles, one red and two blue. A marble is is drawn at random from the first bag and placed in the second. A marble is is the drawn from the second and placed in the first.

Find the probability that each bag still contains one red and two blue marbles.

- (b) The letters of the word PERSEVERE are randomly arranged in a row. Find the probability that the E's are together and the R's are together?
- (c) A particle vibrates in Simple Harmonic Motion, making 100 oscillations per second.
 - (i) Show that the acceleration is given by $\ddot{x} = -40\ 000\pi^2 x$.
 - (ii) If the amplitude of the motion is 20 cm, calculate the speed of the particle at
 - α) the centre of its motion.
 - β) the extremities of its motion.

QUESTION 6 (10 Marks) COMMENCE A NEW PAGE

(a) A garden hose releases a stream of water with a velocity of 20 m s⁻¹ at an angle of α to the horizontal. The water streams toward a high wall 20 m away on level ground.

Given $x = 20t \cos \alpha$ and $y = 20t \sin \alpha - 5t^2$, where x and y are the horizontal and vertical displacements of the stream of water from O at any time t, q = 10 m s⁻² and the coordinate axes are taken as shown.

- (i) Find the equation of the path of the stream of water in terms of x, y and α . 1
- (ii) Show that the height h at which the water hits the wall is given by $h = 20 \tan \alpha 5(1 + \tan^2 \alpha).$
- (iii) Using part (ii), show that the maximum value of h occurs when $\tan \alpha = 2$ and find this maximum height.

(b) A particle moves in a straight line so that after t seconds its velocity is $v \text{ m s}^{-1}$ and its displacement is x.

(i) Given that
$$\frac{d^2x}{dt^2} = 10x - 2x^3$$
 and that $v = 0$ when $x = -1$, find v in terms of x .

(ii) Explain why the motion cannot exist between x = -1 and x = 1.

QUESTION 7 (10 Marks) COMMENCE A NEW PAGE

The diagram below shows the path of a projectile fired from the top of a cliff, O. Its imitial velocity is $V \, \text{m s}^{-1}$, its initial angle of elevation is θ and it rises to a maximum height h metres above O. It strikes a target T situated on a horizontal plane h metres below O.

- a) Given that $\ddot{y} = -g$ and $\ddot{x} = 0$, derive equations for y and x as functions of time. 2
- b) Prove that $h = \frac{V^2 \sin^2 \theta}{2g}$, where g is acceleration due to gravity.
- c) Prove that the time taken for the projectile to reach its target is $\frac{V(1+\sqrt{2})\sin\theta}{g}$ seconds.
- d) Show that the distance from the target to the base of the cliff is $\frac{V^2(1+\sqrt{2})\sin 2\theta}{2a}$ metres.

◎ END OF EXAMINATION **◎**

TCRM 2 2014 X MATHEMATICS: Question		
Suggested Solutions	Marks	Marker's Comments
a) i) First card chosen in 5 ways Second - 4 ways Last		5! was mit energh.
= 120 ways		
others can be placed in 3! = 6 ways	1	
$p(E) = \frac{3!}{5!} = \frac{6}{120} = \frac{1}{20}$	1	e d
iii) hast number is odd in 3 ways out of S. : p(E) = 3/5	2.	Some perple found 72 any of doing this
b) 1) 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2	This liagren a shows the brust minimum to 2 makes. Change omissions of FATIVE lost I make.
ii) From the graph, first direction change is when $\frac{t=\overline{1/3}}{x=2m}$ second $\frac{x=2m}{x}$	1 1	
iii) Between O and T/3 travels 1 (+ve) T/3 and 4T/3 travels 4 (-ve)		
total distance = 5 metres		

a) (i) $\frac{d^2x}{dt^2} = 1-4x$ $= -2^2(x-\frac{1}{4})$ Since of form $5c = n^2$ where $X=(x-x)$ it is in The period in the period of the perio			Marker's Comments
$dx(2)^{2} = 1-471$ $dx(2)^{2} = 1-471$ $dx(2)^{2} = 2x - 2x^{2} + C$ $dx(2)^{2} = 2x - 2x^{2} + C$ $dx(2)^{2} = 2x - 4x^{2} + C$ $dx(2)^{2} = 2x - 4x^{2} + C$ $dx(2)^{2} = 2x - 4x^{2} + C$ $dx(2)^{2} = 2x - 2x^{2} + C$ $dx(2)^{2} = 2x - 2$	$= -4(x-\frac{1}{4})$ $= -2^{2}(x-\frac{1}{4})$ Since of form of = n ² the where $X=(x-x_0)$ it is in SHM (ii) From (a) contrains $\frac{1}{4}$ ($\frac{2\pi}{1}$) amplitude Since extenity amplitude = 1.25 - 0.25 amplitude = 1.25 - 0.25 Alkenative not as elegant $\frac{d}{dx}(\frac{1}{2}v^{2}) = 1-4\pi$	Marks	Too many Students used U2=n2(G2-x2) which onlywork

MATHEMATICS Extension 1 : Quest	ion2	
Suggested Solutions	Marks	Marker's Comments
Suggested Solutions $V^{2} = 2x - 4x^{2} + 3.75$ $V = 0$ $C = 4x^{2} - 2x - 3.75$ $0 = 16x^{2} - 8x - 15$ $(4x + 3)(4x - 5) = 0$ $X = -\frac{3}{4} \text{ or } \frac{5}{4}$ $\therefore \text{ cany intende } \frac{1}{2} \times \left(\frac{5}{4} - \frac{3}{4}\right)$ $= \frac{1}{4}$ $Assume general equation$ $X = b + a \cos(n + + x)$ $b = \frac{1}{4} \text{ when } t = 0 \times = 1.25$ $Q = 1$	IVIAITKS	Students using this method made algebraice errors.
$1.25 = \frac{1}{4} + \cos(2++\alpha)$ $1 = \cos \alpha$ $1 = \cos \alpha$ $1 = \cos \alpha$ $1 = \frac{1}{4} + \cos(2+)$ $1 = \cos(2++\alpha)$ $2 = \cos(2+\alpha)$ $3 = \cos(2+\alpha)$ $4 = \cos(2+\alpha)$ $5 = $	1	Some Stucken 13 found this but substituted In uzznical-11 retter than

MATHEMATICS Extension 1: Question		
Suggested Solutions	Marks	Marker's Comments
$\frac{dx}{dt} = -2\sin 2t$		
when t= 0.2		need to
$V = -2 \sin(0.4)$		substituted substituted
= -0.78 m/s.		t=0.2
(b) V = A - Ae -kt		1-10 V2=n2(a1-112)
A = A - A e - 21c 5.		
L = 1 - e		some sticless used v= 4
$-2K = \ln(4)$	1	OR V=4
た= たい(告)	,	question difficult
V = A (1 - e - 1241-(5) 13)	et	
$V = A \left(1 - e^{-2\ln(3)} \right)$		
V= A(1-eln =)		
$= A \left(1 - \frac{9}{16} \right)$		
$= \frac{7}{16} A$		
In next 2 minutes		Many stude 18
76A - 4T = 36A		arreguerin
so 3/6 will be filled in next		'

3- unit Hathe matics		
		Ask a shareha
Question 3		Alternatively
(1) show that dA = -3k(A-4)	٨	dA = -3k(e-3kt)
		at -3k(++e -4)
$A = 4 + e^{-3kt}$		I
$\frac{dA}{dt} = -3k e^{-3kt}$		= -3k (A-4)
de		
since A = 4+ C		
e-3kt = A-4		
: dA = -3K(A-4)		
(11) Find the value of k if initially A		1) If used
decreases at a rate of 0.04 glbr.		dA as 0.04
when t=0, dA = -0.04.		
at		then got -1 15
dA = -3ke-3k(0)	١,	as answer
al te	•	(got only
-0.04 = -31< e		(D) I mark).
-0.04 = -3K		If used
1. K = +0.04		$\frac{dA}{dt} = -3k(A-4)$
- 3		then had to
K = 1-75	1	calculate A as 5.
		towards by a second
		I mark for y-Intercept
A A	3	1 mark for asymptote
		I wank for shape
		and must slow
		one other point
5 (10,4-7)		apart Som y-Intercept
4		
		Note
3		Took away Marks
2		14 curve was
		touching the
1		asymptote.
0 10 20 > t		
Other points mentioned were (3, 4.84), (200, 4.0)		
(5, 4.82) (47.3, 4.5) - accepted (25, 4+1)		
-		

Method III Touple on same table of 3 60, x2! x 50, x4! = 288 Case 2 comple on some table of 5. 6 C3 x 4! x 3 C3 x 2! = 960 p (same table :. p (deferent) = 1440 2688 = 15 28

(F)

Suggested Solutions	Marks	Marker's Comments
$0 T = Ae^{-kt} - 5$ $when T = 100 t = 0$		Two coinmon Caneless irross
100 = AE -5 4 A = 105	Livit	@ Forget the -
, When t=30 T=30		from loos got A
30 = 105 C 20k - 5		many students confused tona T
35 = 105 e 20 k -30 k = 10, 75		in the substitut
	1 mk	
When t=30		
T = 105 e = 30 (53) -5		Common error-fe to subtract the S
= 15:20725942 = 15" (neorest degree)	Imk	mark and deducted for not rounding.
When T=0		
21		
	Imk	Note.
$t = \frac{k}{4\pi^{\frac{1}{2}}} \operatorname{or} \frac{201\pi^{\frac{2}{2}}}{2\pi^{\frac{2}{3}}}$		Note: www.t=55 T t-56 T=
= 55.42487498 = 55 main carest min).	lmk	<i>l</i> .

30 MATHEMATICS: Question 4.		
Suggested Solutions	Marks	Marker's Comments
BBR= 言さささ、RRB= 言さらう、RRG= 言言言言言言言言言言言言言言言言言言言言言言言言言言言言言言言言言言言		A common incorrect answer was 27 Note: There are a different combination
RBG= $\frac{1}{6}\cdot\frac{1}{3}\cdot\frac{1}{4}$ There are in distinct probability values (ii) $R(RRR) + P(BBB) + P(GGG)$	lmk.	eg. BBR=RBB=5 GGB=GBG=12
$= \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} + \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = $	lmk	
3 B B B B B B B B B B B B B B B B B B B	lmk	Students who drew a tree diagram had a better understo of the question Note: If you we looking at all color (3) RRB, RBR, BRR (5) CGB, GBG, BGG (6) RBG, RGB, BRG, BRG, BRG, BRG, BRG, BRG,
P(exactly one blue) = P(BBB)+P(BBB)+F = $\frac{1}{3} \cdot \frac{1}{3} \cdot 1$	(BBB)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

$$P(E) = P(RR) + P(BB)$$

$$= \frac{1}{3} \times \frac{1}{2} + \frac{2}{3} \times \frac{3}{4}$$

$$= \frac{1}{6} + \frac{1}{2}$$

$$= \frac{2}{3} + \frac{1}{4}$$

No of avargements with Es together R's together No of avargements with Es together R's together No of avargements who restrates = $\frac{9!}{4!2!} = 7160$

(7)
$$T = \frac{2\pi}{h} = \frac{1}{100}$$
 $h = 200 T$
 $\dot{x} = -h\dot{x} = -40,000 T\dot{x}$

(ii) a) centre of motion
$$x = 0$$

 $V = n'(a'-x')$
= 40000 $T_1'(20^2-0)$
 $V = 40,000T_1'' \times 400$

Speed = 11 = 4000 Ti cm/s # or 4 Ti m/s #

$$\beta$$
) when $x = \pm 20$, $V = 0$ cm/s#

1かかちのも

Well

Sine

Im for 5 ! or 9! 4/2!

In for 63

im for n

C.O.M /m

1m

I'm must justify speed is positive or must have compet unit

MATHEMATICS: Question		
Suggested Solutions	Marks	Marker's Comments
QXX) 1 = 20t 6050 y = 20t Sind = 5t2	(3)	Correct Equation in any form:
J = 20 2 SIN3 = 5 Z Z SIN SI		x, y, x.
7		1 For Changing
Adda Section 1	(2)	cosa to (1 rtmix)
LOUIS GENERAL STATE OF THE STAT		and simplifying
$4x = 20 \tan x - 400^{\circ} (1+60 \cos x)$ $= 26 \cos x - 1+60 (1+60 \cos x)$		Answer was guar So sukstitution must be she is n
(112) Meshad (1)	<u>a</u>	•
Let Ada Land to the State of th	C	o for showing max occurs when
A Sand Sand Sand Sand Sand Sand Sand Sand		must shew why it is
MK 1 M Land Comment of the state of the stat		Alternatively And dhy
Coll Max = Chi 50 Cult Max		and test formice

EXYENSION I MATHEMATICS: Question.	,	
Suggested Solutions	Marks	Marker's Comments
Muxinumlerges tan x = 2		Oconnect
- 20 x 2 - 5 () t 2	~~	suriscour.
2) (1) 2 = -2 = 3 2	3	Of C vertice
X = 2 + C + C + C + C + C + C + C + C + C +		O comple" " expression including ± 5
(11) For motion to exect 121-10 10 2-2-9-9	©	D stating
$= \frac{(-10x+9)}{(-10x+9)(-10x+9)}$ $= (-3x+3)(-1)(-10x+3)$	1 \	O SHOWING
		Attennatively
V2 - 6 - 6 - 1 - 2 = 1 - 2 = 1 - 2 = 1	o mote	
Plethed (2) v=0 at 20=13 20= at a = -1 v=0 20=-8 object mens to left and steps at at a = -3 20=24 object names	i ergl	to left 11mm
Allisto Staps alt I = - Hum many S 65 all aling by taken I = - I and ALLISTO \StaffHomes\WOHURAH M Fac Admin\Assessment in fo\Suggested Mk solns tem No motion for - 1 < 5c < 1	x =-3	particle only mores between -3620

MATHEMATICS Extension 1 : Quest	ion	
Suggested Solutions	Marks	Marker's Comments
(a) $3\hat{c} = 0$		* If the students didn't show how
= c,= vase c2= vsine g=-gt + vsin		they evaluated the constants of integration, they get
at t=0,x=0,y=0 = c3=0 and c4=0	D+C4	1 for 'x'
-: >(= vtcose)		1 for 'y'
b) mare height when y=0 io=-gt+usin0 t= vsin0	0.	K
=:h= -= (\(\frac{1}{2}\) \(\f		
$=-\frac{v^2 \sin \theta}{2g} + \frac{v^2 \sin^2 \theta}{g}$		
$= -\frac{\sqrt{5}}{29}$ $= \frac{\sqrt{25}}{29}$	(Î)	
E) when y=-h		
-h=-zgt+vtsino		
$\frac{-v^2 \sin^2 \theta}{2g} = -\frac{1}{2}gt^2 + vt\sin \theta$	I (i	

MATHEMATICS Extension 1 : Question	n 7 c	ort.
Suggested Solutions	Marks	Marker's Comments
$0 = gt^{2} - 2vt\sin\theta - v^{2}\sin^{2}\theta$ $0 = gt^{2} - 2vt\sin\theta - v^{2}\sin\theta$ $0 = gt^{2} - 2vt\sin\theta$ $0 = gt^{2} - $	(,0)	
$= 2vs.n\Theta \pm \sqrt{4v^2sin^2\Theta + 4v^2sin^2\Theta}$ $= 2vsin\Theta \pm 2\sqrt{2}vsin\Theta$ $= vsin\Theta \pm \sqrt{2}vsin\Theta$ $= vsin\Theta (1+52)$ $= v$	De	Had to Texplain why it was positive
(d) when $t = vsin\Theta(1+JE)$ $z = ??$ $= v. vsinO(1+JE) cos\Theta$ $= v^2 sinOcos\Theta(1+JE)$ $= v^2 26.00000 (1+JE)$ $= v^2 3in20(1+JE)$ $= 29$		